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The object of the present study was the ana1ysis of temperature effects which arise in
a two-layer tissue model appliOO in obstetrics, from the point of view of continuous wave
radiation of a focussOO Gaussian ultrasound beam. In particular, the authors considerOO
nonlinear propagation using the weak shock theory and comparOO the results of the ana1ysis
with those obtainOO assuming linear propagation. It was demonstrated that for 3 MHz, 10
cm foca11ength ofthe beam, the transducer diameter of 1 cm and the intensity ofO.1 W/cm2
the schock parameter does ot then exceed 1.66° cm. For a radiatOO intensity equa1 to 1 W /cm2
the shock coefficient is higher than unity, causing losses related to nonlinear propagation.
The temperature distributions were determined a1ong the beam axis using both the weak
shock theory and the linear propagation procedure.

1. IntrOdUCtiOD

In the past years the first ofthe authors showed that ultrasonicDoppler equipment
could cause a temperature increase on the body surface up to about lO°C [6,7]. The
measurements were taken using thermographic equipment showing decided1y that
ultrasonic diagnostic equipment could cause relatively large temperature increase.

It is an important problem from the point of view of a threat caused by ultrasound
to a foetus. In keeping with recommendation ofthe World Federation for Ultrasound
and Biology [13], the permissible increase of the foetus tem perature is 1.5° C above the
physiologica1 temperature of 37°. If the temperature rises to 41°C higher the nervous
system of the chi1d being bom can be endangered, with e.g. tragic effects for it

(teratism).
For ethical reasons direct measurements in the pregnant woman's uterus are

impossible. Therefore, for several years attempts have been made to determine
temperature increase analytically.
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The purpose of this study is to determine temperature increases for diagnostic c. w.
ultrasound beams. In obstetrics c. w. equipment is very broadly used to monitor and
alert physicians in the case of a threat to a foetus in his mother's womb. According to
Japanese data [II], intensities applied in c.w. diagnostic Doppler equipment vary
between 10 and 330 m W /cm2. In the present study both linear and nonlinear types of
propagation are considered; the purpose is to find a limiting ultrasound intensity at
which relatively simple and proven calculation methods developed for linear
propagation may still be used.

2. A diagnostic ultrasound be am and a two-layer tissue model

In a previous work [9] the authors calculated temperature increases in a two-layer
tissue for 6 ultrasonic probes. The frequencies of these probes were 3, 5 and 7.5 MHz
the focallengths were 10,5,4,3 i 2 cm, and the transducer diameters were 20, 13,9.6
and 6 mm. The calculated results showed that the greatest temperature increases
occurred when a 3 MHz beam was applied, one which was generated by a piezoelect-
ric transducer with radius d= 1 cm and a focallength of 10 cm. Therefore, our further
considerations will be restricted to such an ultrasonic beam which is the worst case.

Just as in the study cited above, the Gaussian beam model was assumed. It was for
such a beam that such temperature increases as occurred for a continuous wave were
published [14]. Moreover, the Gaussian beam is convenient because ofthe simplicity
of mathematical transformations; additionally, it gives results which, as Wu and
NYBORG showed, are very close to the real beams [15].

A temperature increase depends on the absorption and thermal conductivity of
tissues as well on the heat generated by the ultrasonic probe. The 1atter may be
ignored, for it has only a superficial effect, whereas the heat sources caused by
absorption are volumetric. The cooling effect of blood is also neglected so as to
consider the worst patient case.

The tissuemodel under consideration consists oftwo layers. The first one is water,
analogous to the physiologicalliquids which fill the space between the body surface
and the foetus. The other layer is the soft tissue of the foetus itself. It was shown in
study [9] that in the case of a continuous wave there was the highest temperature
increase in the beam focus (see Fig. 6.1 in the study cited above). It is a result of no
attenuation of ultrasonic beam in the first (liquid) layer .

Moreover, it is assumed here that the thickness z, ofthe first liquid layer is equal to
the physical focallength zf= 10 am. It is than that an almost maximum temperature
increase occurs (see Fig. 4 of study [15]).

3. Basic fonnulae

Given the beams and tissues thus selected, the nonhomogenous equation of
thermal conductivity can be solved in a form which neglects the cooling blood flow

(perfusion)



aT/at=a "³2T+Q/pcs, (3.1)

where T is the tissue temperature, t is time, a=A.c/p is a thermal conductivity
coefficient, "³ 2 is the Laplace operator, p is the tissue density, Cs is the specific heat,

Q is the power density of the heat sources, depending on the attenuation coefficient (X,
which is a function of frequency and the intensity I, according to the relation

Q=2lXU)I(x,y,z).

This relation is valid only for linear wave propagation. In a general nonlinear case the
coefficient lX is replaced by the attenuation parameter lX" which is defined using the
general relation [4]

!X p = -( div 1)/2 I

where I, I are respectively the vector and value of a local wave intensity.
The power density of the heat sources (the power density absorbed in tissues) has

the general form [3], [12] of

Q= -divI

The intensity vector in a focussed Gaussian be am in a cylindrical coordinate system z,
r is in the fonn (see equation A4 in [4]) of

I(z. r)=I(o, o)G2exp( -2r2/a~(1 +R2)] {e,rR/r 0(1 +R2)2+e=1/(1 +R2» X

00 00

L B~ [u(z, r)] =I'(z, r) L B~[u(z, r)],
,,=1 ,,=1

where z, r-coordinates ofthe cylindrical system, R=(Z-Zf)h1/2, Z f -physical focal
length, k-27tf/co-wave number, h=(kRy2zay, co-wave velocity oflow amplitude
waves, u -shock parameter [1], a~=Ry(l +h) -beam radius at the focus for the
amplitude level exp( -1 ), Ro -radius for which the vibration velocity on the
transducer surface falls to e- 1 ~ 0.37 of its maximum amplitude [8], r o = kay2, e,., ez

-respective unit vectors of the cylindrical coordinate system, G- amplitude gain in
the focus.

In the geometrical focus the amount of the gain in a Gaussian beam can be
determined from formula (23) in study [8]. Then

(3.5a)Gg= I p,(zO' O)/p(O,O) I

p is the acoustic pressure in the be am. The gain in the physical focus, where the

maximum amplitud e occurs, is a slightly larger

=kR2J2zo,

p(Zg, O)/p(O,O) I > Gg (3.5b)G=(h+ 1)1/2=G/=

It can be calculated by determining the value ofz, given by formu³a (5a) in study [9]



zf=zg[l +4Zi/k2Ró)]-1=Zgh/(1 +h) ~ Zg (3.5c)

In study [4] the authors assumed a different value of the amplitud e gain

GD=d/a=dkRJ2zg,

which seems to be doubtfull since for the Gaussian beams exact are the values given

by (3.5a), (3.5b), (3.5c).
According to [4], the last term of expression (3.5) is determined in terms of the

weak shock theory proposed by BLACKSTOCK [1]. BIl is the harmonic coefficient of the
distorted wave.

<11

Bn[0-(Zr)]=2[n7t0-]-1 { l1'min+ j. COSn[l1'-o-Sinl1']dl1' } , (3.6)
'Z'mln

min is the root of the equation 11'= o-(z. r) sinl1' min for o-> I; I1'min = O for 0- < I.
In a two-layer model with attenuation occurring for Z~ZI the intensity vector is

{ 00 LB~(z,r) 'for Z<Z,' (3.7a)

I(z,r)=I'(zr) ":1
,,~lB~(z,r)exp[-2(J(n)(z-z,)] for Z~Z', (3.7b)

where the vector field r(z, r) is lossless. The attenuation of the beam is represented in
the second right term ofEq. (3.7 b). The attenuation coefficient (X (for low amplitudes)
is proportional to the (harmonic) frequencies a(n) = n(X.

The shock parameter (J for the Gaussian beam equals [4]

(J(z, r)=pGkzoG(G2-1)-1/2{ln [G+(G2-1)1/2)(R+(1 +R2)1/2)]} X

exp( -r2/afj(1 +R2)],

where p = I + BI2A, BI A -coefficient of nonlinearity equai for the muscie tissue and
iiver 7.5, for fat II, for water 5.5, e=(21JpciDl/2 -ratio ofthe particie veiocity to COl

10=1(0,0).
The value of Q can now be determined

Q -div I(z. r).

The vector I' in expressions (3.5) and (3.7 a, b) is a quantity formulated on the basis of
the linear theory of the Gaussian beam, without any losses. Therefore, due to the
energy conservation and Gauss laws

JI'ds=JdivI'dv=O, (3.10)

where dY and dv are surface and volumen elements. Hence div I' = 0. On the other
hand, the expression under the summation sign in Eq. (3.7) is a scalar u. Using then
the vector relation one obtains
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div Ul' = U div I' + I' grad U =1' .grad U. (3.10b)

Therefore one obtains from relations (3.10b), (3.8), (3.7) and (3.5)

(3.11a)the value Q=Ql'for Z<Z,

where

3r2/a~1 + R2(Z)]}[1 + R2(Z)]-1/2 XQl=-Cexp{
(3.11b)

00
x L B" [(J(z. r)]BP "[(J(z. r)]

"=l

(3. 12a)the value Q QL + Q2 ,for z ;;?;z!

where
QL =2l2G2[1 +R2(z)]-lexp{ -2r2/a~[1 +R2(z)]} x

(3.12b)
00

x L (JnB~[(J(z. r)]exp[ -2CL(n)(z- ZJ] ,

n=l

Q2= -Cexp{ -3r2/a~[1 +R2(z)]}[1 +R2(Z)]-1/2X

(3.12c)
00

x L B" (a(z. r)]BP ,,(a(z. r)]exp( -2a(n)(z-z,)] ,
,,=1

and

(3.12d, e)C=2IJ1ekG3; BP n=Bln-Bn/0"(z. r),

1[
BlII=2(7t(J)-1 J sin[n(q,-(Jsin(q,))]sin(q,)dq,. (~

fl)min

In the case of a piane w ave the following dependence should then be satisfied

pek» (X.

When relation (3.13) is not valid shock can be neglected [1]. Study [10] also makes
a similar suggestion. It demonstrates that for a plane wave in soft tissues, harmonic
frequencies are very rapid1y attenuated, preventing shock [12]. In a weakly focussed
Gaussian beam this phenomenon must occur in a similar way when attenuation is
strong, which, as in other studies, is assumed to be 5 Np/(m.MHz); particularly in the
focal area, where the wave is close to a plane one. The solution of equation (3.1) under

the initial conditions

(3.14)T(x,y,z, t)=o for t=O,

and the boundary ones

iJT/iJz=O for z=O,
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which are the same as in the previous author's study [9], a genera³ solution is obtained
in the form given there (3.14)

-11200 00 00 t
T= (47tpcs) J d' J d'1 J d' J d. [47ta3(t

-00 -00 -00 O
T)3]lf2

~

(3.16)
exp [ -')12{(,(,11)/4a(t- 't")] .Q{(, 11, , I ),

where

y2=(X- 02+ (Y-'1P+(z-02, (3.17)

Mter integration with respect to 1: (see equation A6 in study [9]) and considering the
relation erfc(O)= I for t which ten d s to infinity, equation (3.16) becomes

-100 00 00
T= (47tapcs) J d( J d'1 J d( ,.-lQ«(, '1,

-00 -00 -00
I' ).

Integral (3.18) can be expressed in a cylindrical coordinate system introducing the

dependencies

r'cos ljJ', 17 = r'sin tjJ', x=rcost/>, y= rsin 4> (3.19)

then

r'2='2+'12, r2=x2+y2, d'd" = r' dr' dt/>'. (3.20)

The temperature distribution on the beam axis (r=O) is taken into account. Then,
considering (3.19) and (3.20) in expression (3.18) integration is carried out with
respect to tjJ' within the lin1its of 0, 27t, fina11y to give the form

, I)r'dr'.
-100 00

T(r',',t= oo)=(2apc,,) J d'J [r'2+(z-O2]-lQ(r',
-00 O

Integral (3.21) was solved numerically for the following data:
10(0,0)=0.01, 0.1,1 W/cm, 3 W/cm, 5 W/cm, 6=5 Np/(m.MHz), c=1500 m/s,
cs=4190J/(kgOC),a=0.0015 cm/s,f= 3 MHz, G=Gf=3.67 (Gg=3.53), d= I cm (the
transducer radius), Ro=0.75 cm (see [9]), zf=10 cm and t=oo.

Table I shows the results of current calculations of the temperature increases
T and the results determined for T L using the previous linear procedure as applied in
study [9]. These calculations were carried out for a two-layer TL model, where the

Table t. Comaprison of temperature increases determinOO for a two-layer model in the
cases of nonlinear T and linear T L propagation

0.1l(z=O, r=O) W/cm2 0.01

T
TL
T/TL

'C
'C

0.166

0.166

1

1.66

1.66
18.0
16.6
1.08

61.5

49.8

1.23

104.4

83.0

1.26
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first 10 cm thick layer was a liquid «(X=o) and the other was soft tissue (a=5
Np/(mMHz). The table also shows themaximum temperature found on the beam axis
(r=O) close to the focus (Z~Zf).

The linear procedure made it possible to apply simple extrapolation of temperatu-
re to any intensities 1(0,0). F or in the case oflinear propagation a temperature increase
is proportional to the intensity generated by the transducer (see Eq. (3.18) and A22 in
study [9]). The temperature values determined in this way were denoted as T L'

Figure 1 shows the distributions of the temperature increases T along the beam
axis, determined by the weak shock method and based on formula (3.21) for the
intensities /(0,0)=0.1 W/cm2 and 1 W/cm2.

Figure 2 shows analogous distributions oftemperature increases T L determined for
theintensity /(0,0)=0.1 W/cm2, assuminglinearpropagation (seeFig. 6.1 in study[9]).

lcm]l() 155

Fig. I. Distribution of the increase in the temperature T a1ong the axis of the ultrasound beam determined
using the weak shock theory for the source intensity /(0,0)=0.1 and I W/cm2. The solid line represents the

applicability range of the weak shock theory. T denotes tissue and L liquid.
,
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Fig. 2. Distribution of the increase in the temperature T along the axis determined using the linear
procedure at the source intensity [(0,0)=0.1 and 1 W /cm2. T- tissue and L -liquid.



Fig. 3. Distribution of the shock parameter O" along the ultrasound be am axis for the source intensity
/(0,0)= 1,0.1,0.01 and 0.001 and I W/cm2. The solid represents the applicability range ofshock parameter

calculations. T- tissue and L -liquid.

Fig. 4. Distribution of the temperature increase determined using the weak shock method for the intensities
I(O,O)=O.I, l, 3 and 5 W/cm2. The solid represents the applicability range of the weak shock theory.

T ~ tissue and L ~ liquid.

[244]



245TWO-LAYER OBSTBTRIC MODEL OF 11SSUES

Figure 3 shows the distribution of the shock parameter a1ong the beam axis,
calculated from expression (3.12).

Figure 4 shows comparison of the distributions of temperature increases deter-
mined using the weak shock method for the intensities 1(0,0) = 0.1, 1, 3 and 5 W /cm 2.

4. Discussion and conclusion

The present ana1ysis shows that in the case of ultrasonic diagnostic probes which
generates the highest potentia1 temperature increases, when working at a continuous
wave, temperature increases determined with the assumption of linear and non1inear
propagation are the same for source intensities lower than 1 W /cm2 (see Table). This
result was obtained assuming a two-layer tissue model which is applied in obstetrics.
Moreover, the weak shock theory and the calculation procedure for linear propaga-
tion were used [9].

For the source intensity of 1 W/cm2 the shock phenomenon can be seen. The
temperature increase is then 8% higher than that for linear propagation. The
considerations enter the range of non1inearity. The shock parameter O" is higher than
unity (Fig. 3). After the study by CARSTENSEN et al. [3] the shock effects decidedly the
losses of the propagating wave.

For intensities lower than 1 W/cm2, O" is lower than unity and the shock has no
effect on wave attenuation. The distribution of the shock parameter determined here
along the beam is valid on1y in the range of the first lossless liquid layer. In tissue for
z higher than Zl there is considerable absorption, as a result of which the harmonic
frequencies are strongly attenuated, and, therefore, the shock decays. Then the curve
O"=0"(z) becomes inva1id.

The temperature distributions on the beam axis determined using the weak shock
theory (Fig. 1) and the 1inear procedure (Fig. 2) are very close to each other. It seems
to confirm the validity of both methods.

It is interesting to note the fact that the weak shock theory is a correct
description of non1inear losses as long as the propagation path is shorter than some
critical value. In the case of a plane wave this value is equal to the inverse of the
linear absoprtion coefficient of the medium [2]. In the present case, at 3 MHz, the
critical value of the propagation path is l/lI= 1/15m=6.7 cm, in the focal area the
Gaussian beam can be approximated by a plane wave. Therefore, the weak shock
theory applied here is certain to describe correctly the phenomena which occur in
tissues at the depth range three times lower, from 10 to 12 cm, where the maximum
temperature can be found.

The final conclusion may be that the boundary value of the intensity of the
ultrasound beam described here at which it is necessary to take into account the
phenomena of non1inear propagation, is 1 W /cm2, measured on the transducer which
radiates the beam.

What is important for clinica1 applications is the result that the intensity I(z=O,
r=O) should be lower than 0.1 W/cm2 for the temperature increase of the probe in
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question to be less than 1.66°C. In t his case, the temperature increases are unlikely to
grow as a result of nonlinear propagation.
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