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Abstract- The theory of wave reflection from spherical obstacles was applied for determination of the
cause of the shadow created by piane wave pulses incident on rigid, steel, gaseous spheres and on spheres
made of kidney stones. Tl)e spheres were immersed in water which was assumed to be a tissuelike medium.
Acoustic pressure distributions behind the spheres with the radii of 1 mm, 2.5 mm and 3.5 mm were
determined at the frequency of 5 MHz. The use of the exact wave theory enabled us to take into account
the diffraction effects. The computed pressure distributions were verified experimentally at the frequency
of 5 MHz for a steel sphere with a 2.5-mm radius. The experimental and theoretical pulses were composed
of about three ultrasonic frequency periods. Acoustic pressure distributions in the shadow zone of alI
spheres were shown in the amplitude axonometric projection, in the grey scale and also as acoustic isobar
patterns. Our analysis confirmed existing simpler descriptions of the shadow from the point of view of
reflection and refraction effects; however, our approach is more general, also including diffraction effects
and assuming the pulse mode. The analysis has shown that gaseous spherical inclusions caused shadows
with very high dynamics of acoustic pressures that were about 15 dB higher in relation to alI the other
spheres. The shadow length, determined as the length at which one observes a 6-dB drop of the acoustic
pressure, followed the relation r -6dB = 3.7a2/). with the accuracy of about 20% independent of the sphere
type. ). denotes the wavelength and a the sphere radius. Thus, a theoretical possibility of differentiating
between gaseous and other inclusions and of estimation of the inclusion size in the millimeter range from
the shadow was shown. The influence of the frequency-dependent attenuation on the shadow will be consid-
ered in the next study.

Key Words: Shadow, Pulses, Spheres, Ultrasonography.

sue1ike medium. Next, we explore the usefu1ness of this
infonnation to the diagnostic u1trasonic examination.

Until now one can find in the literature only stud-
ies describing the shadow produced by stI"uctures in
an ultrasonic field from the point of view of geometri-
cal (ray) acoustics.1n such cases, the ratio ofthe stI"uc-
ture dimension to the wavelength, which is important
for its detection and for diffraction effects, is com-
pletely ignored. Moreover, all the existing reports as-
sume that the shadowing stI"uctures are in the form of
a circular cylinder, which is convenient for explaining
the refraction phenomena (see, e.g., Robinson et al.
1981; Soetano and Reid 1991; Ziskin et al. 1990).
However, they do not occur in the majority ofcases in
clinical ultrasonography ( with the exception of blood
vessels) .Another limitation is caused by considering
the continuous radiation mode while, in reality , short
pu1ses are used.

INTRODUCTION

The shadow that occurs in ultrasonography behind var-
ious pathologica³ structures like cancerous tissue,
cysts, ca³cifications, gas bubbles and so forth contains
infomlation about the detected structure. However, the
existing theory , based on geometric acoustics, does
not a³low the nature of the detected structure to be

identified.
The purpose of this article is to find a numeñca³

description of the u³trasonic shadow produced under the
plane-wave condition assuming that the shadowing struc-
ture is in the foml of a sphere with various acoustic
parameters different from those of the surrounding, tis-
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pressures of the piane w ave Pi incident on the sphere
and of the w ave Pr reflected ( or scattered) from the
sphere ( Morse and Ingard 1968 )-or

~

-
PF Ps = Pi + Pr ( 1 )

The acoustic pressure of the wave reflected from the sphere
is obtained as the solution of the sca1ar wave equation in
the medium sun-ounding the sphere for boundary condi-
tions corresponding to the sphere materia1.

The monochromatic pIane pressure wave incident
on the sphere (Fig. 1) is (Hasegawa et a1. 1977; Rud-

gers 1969):

z

Fig. I. Coordinate system used: r-radius (distance from
the sphere center O), O-azimuth, z-symmetry axis, a-
sphere radius, PF-front of the incident piane w ave, 0'-

observation point. Pi(t) = POexp[jUJ(t -r COS (Jlc}]

= poexp[jka(ct -r COS (J)la]

= poeXp(jkaT')

The w ave reflected from the sphere can be presented
in the form:

Pr(t) = po(aI2r)ft(ka) exp[j(L1(t -rlc)]

= po(a/2r)ft(ka) expUkaT"

In Eqns ( 2) and ( 3 ) , describing the incident and

In our study, we investigate small pathological
structures in their first stage of development, which
are of greatest importance for the early diagnosis of
pathological processes. Therefore, we have chosen
structures of spherical shape with small radii of 1 mm,
2.5 mm, and 3.5 mm. In such cases, diffraction effects
are the determinant for the shadow formation and they
cannot be described by geometrical ( ray ) acoustics.
Only the wave acoustics applied in this article are re-
sponsible for the exact description of the shadowing
effects. Consequent1y, the corresponding mathematical
equations were applied and considerable numerical
computations were carried out to visualize the shadow
in various presentation modes.

Such a treatment was applied by the first two
authors to investigate shadows in the case of continu-
ous waves (Filipczyñski and Kujawska 1989; Filip-
czyñski et al. 1991) .The problem will now be investi-
gated from the point of view of ultrasonography where
extremely short pulses are applied.

Water was chosen as a tissuelike medium for the
following reasons. First, densities and wave speeds of
water and soft tissues are similar ( attenuation is en-
tirely different). However, we wanted first to simplify,
as much as possible, the complicated phenomenon of
the shadow formation by neglecting the frequency-
dependent attenuation. Second, water enabled us to
measure pressure distributions in the shadow range
point-by-point to verify the derived theoretical and nu-
merical procedures. The infiuence of attenuation on
the shadow formation will be analysed in the next stage
of this study.

Fig. 2. Pñnciple ofthe measurement system: T -transmitter,
P-ultrasonic probe, S-sphere, H-membrane of the
PVDF hydrophone, E-hydrophone's electrode, A-wide-
band amplifier (28 dB), F-low pass filter 29 MHz, 0-
oscilloscope LeCroy 945A, M-microscope table, SH-
sphere holder, WT -water tank, X-axis of the ultrasonic

beam.

FUNDAMENT AL RELA TIONS

The shadow behind a sphere can be determined
from expressions describing the acoustic pressure, P.,
emerging around the sphere. It is the sum of acoustic
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Because the system under consideration is as-
sumed to be linear and invariant, there exists in the
( dimensionless ) frequency domain ka the following
relation:

flJ

--+-
~

Sr(ka} = H(ka}. S;(ka} (8)

~
\ I

V

l.

'l\ 1 " where Sr(ka), Si(ka) denote spectra of the reflected
and incident pulses, and H ( ka ) is the ( spectra1 ) trans-
fer function. It can be found as the response of the
system to the unit harmonic signa1 exp(jkaT )
( Dieulesaint and Royer 1974) .Therefore, óne obtains,
from Eqn (3):,

.4o .8 H(ka) = (aI2r)ft(ka) (9)}15

Fig. 3. Shape of the ultrasonic pulse used in calculations
(solid line) and applied in measurements (dashed line). It means that every monochromatic component of the

incident pulse spectrum should be multiplied by the cor-
responding value of the transfer function in Eqn (9).

The pulse shape of the reflected wave can be ex-
pressed by the inverse Fourier transform:

the reflected waves, dimensionless time coordinates 'T
and 'T were introduced, respectively (Rudgers 1969)
They are equal to:

T' = (ct -r COS O)/a and

7 = (ct -r)la (4a,b)

hence, one obtains the relation'

7" = 7"' + ( cos (} - )rla (5)

One should notice that T' = T when r = O or (} = O.

It means that both waves ( incident and reflected) reach
the coordinates r = 0 and (} = 0 at the same time.

iJ( ka ) , occurring in Eqn ( 3) , is called the reftec-
tion fonn function. It equals ( Rudgers 1969) :

ft(ka) = -2(krlka)exp(jkr) L (2m +

m=O

X ( -j)m+Jsin 17mexp(j17m)

h~)(kr)Pm(cos (}) (6)

where p m is the Legendre polynomia1, jm is the spheri-
ca1 Bessel function, h~) is the spherica1 Hankel func-
tion of the second kind, r is the distance from the
sphere center and (} is the azimuth ( Fig. l) , and:

Fig. 4. Measured (thin curve with points) and computed
(thick curve) pressure distributions behind the steel sphere
(sphereradiusa = 2.5 mm,f= 5 MHz,ka = 16.77r). Vertical
coordinate presents the voltage measured by the hydrophone,
horizontal coordinate-off-axis distance. The distance be-
tween the sphere center and the electrode equaled 35 mm.

(7)j sin 11mexp(j11m) = Cm

is a complex number that can be found from boundary
conditions on the sphere surface ( see Appendix) .
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u ImV--I Pi(T') = n(y)sin kflT (13)

where:I\
~

-- w hen I y I s ~--- n(y) = ICOS2[7r(7"'!d -~)],

O w hen I y I > ~25

and:
go

d = 27rb/koQ

I~ The spectrum of this pulse:

S;(ka) = (2/po) id sin(k~T')COS2[7r(T'ld -~)]

x exp(-jkaT')dT'

can be found by means of indefinite integra1 tab1es
(Bronsrtejn and Semendjajev 1967).

A11 the spheñca1 functions were determined up to
the order of m = x + 15, where x is the argument of
the corresponding function; recursion formu1ae were
a1so used (Rzhevkin, 1960).

MATERIAL OF SPHERES

Four types of sphere material were considered:
rigid spheres ( r ) , steel spheres ( s) , spheres made of
kidney stones (k) and gaseous spheres (g). The first
and the last ones represent two extreme cases of materi-
als with highest and very low acoustic impedances.
The rigid sphere is interesting as a theoretical model
and can be relatively simply described mathematically.
Also, the interpretation of the wave diffraction is sim-
ple since such a sphere is impenetrable for waves. For
the same reason the gaseous sphere is of interest. It is
also important as a bubble model, because bubbles are
frequently observed during ultrasonic exarnination ( in

Pr(T) = (l/27r)Po f~", (a/2r)ft(ka)S; (ka)

x exp(jkaT)d(ka) (10)

where Sj is the spectrum of the incident pulse equal to:

Pi ( T' )exp( -jkaT' )dT' (11)

The interference of the reflected pulse in Eqn ( 1 O )
with the incident pulse:

p;(T')

S; (ka)exp(jkaT')d(ka) ( 12)

Fig. 6. Geometry of the sphere and the hydrophone's elec-
trode AB. rA-path length of the diffracted wave reaching
the point A, rB-path length of the diffracted wave reaching
the point B. AB = 2b-diameter of the electrode, 00' = r

distance between the electrode and the sphere center.

finally fomls the ultrasonic field around the sphere.
It is assumed that the incident ultrasonic pulse

with the carrier frequency fo = koc/27r has an envelope
of the Hanning function.

For the Hanning pulse with b sinusoidal cycles (b
= 4) the acoustic pressure of the incident wave equals:
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ties are close to rigid spheres and due to their accessi-
bility. W ave speeds and the density used for calcula-
tions wece: CI = 5900 m/s, C2 = 3260 m/s and p =

7800 kg/m3.

intestines, in biliary ducts and s o forth [ Kowalski

1994]).
In the case of rigid spheres, the coefficient, cm,

equals simply ( see Appendix) :

Cm = -j ~(ka)/h~)'(ka)
(16) EXPERIMENTAL DETERMINATION OF

PRESSURE DISTRIBUTIONS
while, for a gaseous sphere, one obtains (see Appendix)

= -jm(ka)lh~)(ka) (17)Cm

The spheres made of kidney stone materia1 are
typica1 e1astic structures with properties between rigid
and gaseous spheres. They can a1so be used to repre-
sent ca1cifications, which are common in the case of
neop1astic disease.

Acoustic properties of kidney stones, CI = 3015
m/s, pc = 4.76 X 106 kg/m2s (p = 1600 kg/m3),

were taken from Singh and Agarwa1 ( 1990) .The va1ue
of the Poisson ratio ( v = 0.2) was assumed ( as for

porce1ain and glass) .Hence, the transverse wave speed
cou1d be determined ( Fi1ipczyñski et a1. 1966) :

C2 = cl[2(1 -v)/( -2V)]-I12 = 1840 m/s (18)

The coefficient, Cm [see eqn (7)], could now be
deterrnined by means of Eqns (Al)-(A7) (see Ap-

pendix).
Steel spheres were chosen mainly as their proper-

To verify our analysis and its numerical results,
measurements were performed in the shadow zone be-
hind a stainless s(eeI sphere 2.5 mm in radius immersed
in water, which has tissuelike properties. The sphere
was Iocated on the top of a very thin plastic foiI ( Fig.
2) .The ultrasonic incident wave puIse with the fre-
quency of 5 MHz was generated by a transceiving
probe (Unipan 5LO 25°C). To approach the conditions
typical for ultrasonography, a short electric puIse was
generated, resulting in the ultrasonic puIse shown in
Fig. 3. It was measured for 1 = 51.5 cm by means
of a PVDF membrane hydrophone with an electrode
diameter of 0.5 mm. AIso in Fig. 3, the theoretical
puIse ( Hanning pu³se) used in the calculations is
shown. The two puIses seem to be very similar .

Pressure distributions measured in the incident
wave perpendicularly to its propagation direction have
shown that the incident wave is Iocally pIane ( :t0.5
dB ) at Ieast in the region of l' = :t4 mm where l' is the
off -axis distance. The measurements of the pressure
distribution were carried out in distances r = 24-45
mm behind the sphere showing good agreement with
theoretical curves ( Fig. 4) .The distributions obtained
have an axial symmetry with a main maximum (main
Iobe ) on the beam axis. Then they show two valleys
situated symmetrically.

Only at smaller distances, r, one obtains a dis-
agreement in the value of the main Iobe amplitude
(Fig. 5). This can be explained by the fact that the
hydrophone's electrode diameter (0.5 mm) is too Iarge
for smaller distances, r. It can be easily shown that in
such a case one obtains the averaging effect on the
electrode due to its finite size. Assuming that the differ-
ence between the extreme path Iengths of the diffracted
wave (Fig. 6) should be f~ = (k)~ one obtains, for

the maximum electrode radius at the distance of r =
4a , the value ( Beissner 1985) :

b = (fAn) { r2[a2 -(fAIs)2]-J + 1} 1/2

= 0.08 mm 19)

This means that, in this case, the electrode diameter
should be about three times smaller than the one used in
our hydrophone. Thus, one can final1y conclude that our
theoretica1 results were confirmed by measurements.



266 Ultrasound in Medicine and Biology Volume 22, Number 2, 1996

a

sz s K G

s k g

Fig. 8. Computed grey-scale shadow images behind spheres with radius a = 2.5 mm (f = 5 MHz, ka = 16.71T).
r-rigid sphere, s-steel sphere, k-kidney stone sphere, g-gaseous sphere.

r

PRESSURE AMPLITUD E DISTRIBUTIONS
BEIllND THE SPHERE

a r a

A demonstrative image of pressure amplitudes be-
hind the sphere was obtained in axonometric projection
in the coordinate system r, f} , A, where A denotes the
pressure amplitude. It shows distinctly that the shadow
formation is an interference process. Figure 7 presents
as an example the computed distributions behind a
sphere, 2.5 mm in radius, made of the kidney stone.
It shows high peaks (pressure maxima) on the beam
axis (for f} = O). Near the sphere, some of them are

even higher than the level of the incident wave (as-
sumed to be 1) .However, the peaks change their
shapes by becoming flatter and diminishing with dis-
tance. The two va11eys (pressure minima) located sym-
metrica11y on both sides of the beam axis represent
the main shadowing effect. One can a1so observe the
succeeding maxima and minima when increasing the
angle f}. However, they are much sma11er and diminish
with angle f} .Their contribution to the shadow effect
is much sma11er a1though clearly visible in the grey-
sca1e images.

Maximum pressures occurring on the shadow
beam axis ( f} = o) are, in some cases, higher than the

amplitude of the incident wave. This may be caused
by waves diffracted around the sphere and meeting
with the same phase on the symmetry axis z behind
the sphere. A similar effect was observed in optics
( Filipczyñski et a1. 1991 ) .Minima of pressures occur

a a
K K

a=1 mm a=3.5 mm

Fig. 9. Computed grey-scale shadow images behind spheres
made of kidney stone with the radius of 1 mm and 3.5 mm

(f = 5 MHz, ka = 6.677r and 23.3., respectively).
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dB dB dB dB
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Fig. 10. Dynamics of acoustic pressures represented in grey-scale shadow images of Fig. 8.

s

near the symmetry axis at the places where the dif -

fracted waves are overlapping with opposite phases.

SHADOW OF THE SPHERE IN THE GREY
SCALE

The shadow in ultrasonography is usually pre-
sented as a two-dimensional image in angular ( r, (} )
or rectangular (x, y) coordinates. It is vizualized on
the monitor screen due to scattering of the ultrasonic
beam on tissue inhomogeneities which form a bright
background. In this way, higher acoustic pressures gen-

Table l. Dynarnics of acoustic pressures occurñng in
shadow beams for various spheres (in decibels).

Dynarnicsa=

13
12.5

16

15

22
18

17.0
15.2

2.8
2.8

erate brighter points while lower pressures indicate the
shadow.

The brightness dynamics of monitor screens
a11ows for va1ues up to 40 dB, therefore, it is necessary
to use lin -log amplifiers to compress various tissue
echoes, even those reaching dynamics va1ues equa1 to
100 dB.

Computed pressure distributions were imaged in
the grey sca1e, representing the dynamics of 38 dB
composed of 2-dB steps. Zero level corresponded to
the incident wave pressure ( with the amplitude equa1
to l) .Since the pressure amplitudes on the symmetry
axis behind the sphere were sometimes higher than 1
the maximum grey-sca1e level of +6 dB was chosen.

The pressure field was determined for the dis-
tance, r, in the range from 2a to 36a ( in 2a steps) and
for the angle () = :t30° ( in 0.2° steps) .A transforma-

tion of the polar into rectangular coordinates and a
linear interpolation were carried out when performing
the shadow beam pattems.

Fig. 8 presents as an example grey-sca1e shadow
image of pressure distributions computed behind rigid,
steel, kidney stone, and gaseous spheres. The sphere

13
25

17

32

19
38

16.3
31.7

3.0
6.5
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CR DR

Fig. 11. Computed grey-scale images of spherical cysts caus-
ing a convergent refraction (CR) (w ave speed in the cyst:
1300 mIs; in the surrounding tissue: 1500 mIs) and causing
a divergent refraction (DR) (w ave speed in the cyst: 1700
mIs). Spherical cyst radiu s a = 2.5 mm, f = 5 MHz, ka =

16. 71T .

radius in a11 the cases was equa1 to a = 2.5 mm (f =
5 MHz, ka = 16.77r).

Sirnilar grey-sca1e images of pressure distribu-
tions were obtained for spheres of the same materia1s,
however, with the radius equa1 to 1 mm and 3.5 mm
(f = 5 MHz, ka = 6.677r and 23.37r , respectively) .

Figure 9 shows an example the grey-sca1e shadow
images of kidney stone spheres with radii of 1 mm
and 3.5 mm.

Figure 10 shows the comparison of the pressure
dynarnics occurring in a11 the spheres with a diameter
of 2.5 mm. For every sphere the fulI grey-sca1e is
given (on the left) and part of the grey sca1e, which
is represented in the actua1 shadow beam ( on the
right) .In this way the dynarnics of pressures forrning
the shadow beam is shown. The corresponding va1ues
for spheres of various sizes and types of materia1s are
listed in Table 1.

It is interesting to note a difference in acoustic
pressure dynarnics of gaseous spheres reaching the
va1ue of 15 dB when compared with a11 the other
spheres (see Fig. 10). This observation is independent
of the size of the sphere.

It is interesting to note that our approach is consis-
tent with and in fact is a genera1ization of the simpler

existing descriptions utilizing geometric ( ray ) acous-
tics of reflection and refraction when a circular struc-
ture is placed within an ultrasonic beam.

We present grey-sca1e shadow images of two
cysts causing a convergent refraction (CR) and diver-
gent refraction ( DR) in Fig. 11. The convergent cyst
shows a great increase of the acoustic pressure (bright
patch) on the shadow axis near to the sphere surface
while the divergent cyst has many additiona1 bright
side lobes of the main shadow due to the wave reflec-
tion and refraction on the cyst surface. The two images
are in agreement with the computer-generated descrip-
tion of the paths of ultrasonic rays presented by Ziskin
et a1. (1990).

One should note that the shadow images obtained
show an idea1 case of visua1ization. In a rea1 B-scan
type of image the amplitude of returning echoes is
more complicated. In our case, it was assumed that the
echo amplitude is proportiona1 to the incident in situ
pressure. In practice, it depends a1so on the intrinsic
echogenicity of acoustic discontinuities in the back-
ward path of the echoes.

MHz, ka = 16.77r). The numbers at the curves should

be multip1ied by 2 to obtain, in decibe1s, the 1eve1
change in re1ation to the incident wave 1eve1 ( corre-
sponding to O dB) .To faci1itate the readings of decibe1
numbers at isobars the figure was en1arged horizontal1y
(by 2.6 times) , though it causes some deformations of
the isobar pattem.

In previous artic1es, the first two authors (Fi1ip-
czyñski and Kujawska 1989; Fi1ipczyñski et al. 1991 )
have derived the fo11owing formu1a for the shadow
1ength behind a rigid sphere (for the ka range 12-600)

r-6dB = xa2/X. (20)

where r -6dB is the length at which the pressure drop
equa1s 6 dB in relation to the incident wave, A is the
wavelength, a is the sphere radius, and x is the propor-
tiona1ity factor for continuous wave (xcw) equa1s 3.6.

Acoustic isobars corresponding to the 6-dB pres-
sure drop, computed for a11 the spheres under consider-

ACOUSTIC ISOBARS

Acoustic isobars, curves of constant acoustic pres-
sure, are suitable for quantitative purposes. Figure 12
shows, as an example, isobars behind gaseous and kid-
ney stone spheres with a radius of 2.5 mm <f = 5
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a

k g

Fig. 12. Acoustic isobars computed for kidney stone (k) and gaseous (g) spheres (a = 2.5 mm, f = 5 MHz, ka
= 16.711"). The numbers at the isobars should be multiplied by 2.

ation. allowed us to find directly the shadow length in
every case. The results are collected in Table 2. In
the two last columns the value of the proportionality
coefficient. x. is shown. It is interesting to note that
the coefficients are near to the previous value of Xcw .
The value of x calculated for all the spheres indepen-
dently of the sphere radius and sphere material equals
3.7 ( with standard deviation 0.5) .It means that for a
rough estimation of the shadow length this value can
be used giving an estimation error of about 20%.

hind spherica1 objects of various materia1s when using
short pulses similar to those used in ultrasonography.

However, there are some limitations connected
with k<l va1ues. For low va1ues, such as those used in
this study ( not higher than 23.37r ) , a PC computer
may be used; however, for higher va1ues, such as those
used in our previous study where ka was equa1 to 600
(Filipczyñski and Kujawska 1989; Filipczyñski et a1.
1991 ) , much more powerful computers should be
used.

CONCLUSIONS

The mathematical and numerical procedures pre-
sented can be used for obtaining shadow patterns be-

Table 2. Shadow length (r -6dB) for various spheres,

Value of x =
r --Ala'a=

12.Oa
IO.5a

29.9a
27.5a

41.80

38.50
3.6
3.2

0.01
0.1

Due to this Iimitation, only spheres with a maxi-
mum radius of 3.5 mrn at the frequency of 5 MHz
were considered in our study. This seerns to cover
cases of some pathological structures Iike calcifica-
tions, smalI kidney or gall stones, and gaseous bubbles.
The shadows behind rigid, steeI, gaseous spheres, and
spheres made of kidney stones were presented in an
axonometric projection, in grey-scale as weII as acous-
tic isobar pattems, showing many characteristic differ-
ences. One obtains a deep insight into the formation
of the shadow showing its wave structure.

At the current state of this study two characteristic
quantitative conclusions could be drawn. First, gaseous
inclusions cause shadows with very high dynamics of
acoustic pressures (about 15 dB higher in relation to

14.60

14.7a

29.Oa
33.50

39.8a

46.Oa
3.8
4.1

0.5
0.2
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APPENDIX

The coefficient, cm, equals (Hasegawa et al. 1977)

a1l the other spheres) .Second, the shadow length-
determined as the distance at which one observes a 6-
dB drop of the acoustic pressure-followed the rela-
tion r-6dB = 3.7a2/A with the accuracy of about 20%,

independently on the materia1 or size of the sphere.
These two quantitative conclusions show that

some possibilities of differentiating between gaseous
and solid inclusions and of estimating the inclusion
size from the shadow length exist. The question of
whether and if what kind of information describing the
spherical object can be additiona1ly obtained from the
shadow structure is a fundamenta1 one and needs more

study.
All our considerations were carried out for water

as a tissuelike medium. However, in rea1ity, one should
first take into account the frequency-dependent tissue
attenuation, which may change the results obtained for
water to a great extent. The authors hope to present
such an approach soon.

= -[Fmjm(ka) -kaj.:.(ka)]/[Fmh~)(ka) -kah~).(ka)] (Al)

where j .:.. h~)' denote deñvatives of Besse1 and Hanke1 (second
kind) spheñcal functions. Fm can be expressed by means of the
formu1a (Anson et al. 1981 ):

F m = x~p(Am Bm)/2p,(Dm -Em) (A2)
Acknowledgement- The authors thank the Committee of Scientific
Research, Warsaw, for financial grant support.

where:

Am

= [mjm(X') -xljm+l(xl)]/[(m -l)jm(xi) -x,jm+'(x,)] (A3)

Bm = [2m(m + 1)jm(x2)]/[(2m2 -x~ -2)jm(X2)

+ 2XJm+/(X2)] (A4)

D m = { [x~/2 -m(m l)]jm(x,) -2x,jm+'(x,)}:

[(m- l)jm(x,) -xljm+I(XI)] (AS)

Em = {2m(m + 1)[(1 -m)jm(X2) + XJm+I(X2)]):

[(2m2 -X~ -2)jm(X2) + 2XJm+I(X2)] (A6)

(A7a,b)XI = cxlc, and x z = cxlc,

where CI and C2 denote the longitudinal and transverse w ave speeds,

respectively.
For the rigid sphere c, --00 and C2 --00. In soch a case one

obtains, from Eqn (A2), the valoe F m = O and Eqn (Al) gives the

coefficient Cm as expressed by Eqn (16).
For a gaseoos sphere p, ~ O and the valoe F m = 00 since XI

* O, X2 * 0, Am * Bm, D m * 00 and Em * 00. Then, Eqn (Al) gives
the coefficient Cm as expressed by Eqn ( 17) .
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