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The interface cohesive behaviour and interface delamination in a bi-material structure consisting of two plates and material
interface with zero thickness under time harmonic load is studied. Previously, the authors studied the elasto-brittle inter-
face behaviour, from both sides of a crack, initially normal to the interface, when the elastic-brittle interface debonding
appeared. Now, it is again assumed that the restriction for the ratio of energy release rates of the second plate and interface
allowing the occurrence of an interface cohesive delamination before the initiation of the normal crack in the second plate
is satisfied. The shear lag model is adopted and applied to find the dynamic response of the considered structure, assuming
the cohesive interface behaviour, accompanied before of the elastic-brittle one. In both cases, the growth of debond length
is not considered e.g. at a given loading condition the corresponding single debond length is found. The inertia forces of the
already debonded interface elasto-brittle cracks (mode II) are neglected. The appropriate contact conditions are proposed
in order to fit together both elastic and cohesive solutions. The Laplace inverse transform is applied to obtain the original
of cohesive debond length by the aid of the already obtained elastic value of debond length at the same loading condition.
Parametric analysis of the results obtained is illustrated by examples of the modern ceramic-metal composite on metal
substrate. The influence of frequencies and amplitude fluctuations on the cohesive debond length and the interface shear
stress distribution are discussed.
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1 Introduction

The shear lag approach is one of the most used analytical tools in mechanics of composite materials. The paper of Dowling
and Burgan [1] as well as the paper of Cox [2] traces the interest in shear lag of aircraft and ship design from the early
days to the more recent attention devoted to it by structural engineers. The main idea of the shear-lag analysis is such
an assumption which involves a simplification of in-plane shear stress τxy and decouples the 2D problem into two 1D
ones. Hedgepeth [3] was the first who applied shear-lag model to unidirectional composites. The shear lag model has been
adopted and successfully used by many authors, e.g. [4–16]. Ivanova at al. [13–16] applied the shear lag approach to the
bi-material layered structure with pre-cracked first layer. Different loadings are considered: static, thermal, and combined
thermo-mechanical ones. The elastic-brittle, sleep, and cohesive behaviour of the interface was assumed and the respective
debond length is found. The comparison between shear lag prediction [15,16] with Song’s experimental data for the elastic-
brittle debond length for bi-material structure Zinc/Steel as well as with respective result from FEM simulation 17 shows a
good agreement.

The shear lag approach is also intensively used in the interface fracture mechanics considering the cracking, decohesion
and delamination of thin film on a substrate. A very important (basic) case in the fracture mechanics of thin films is the
problem of an elastic thin film with a vertical crack, the tip of which touches or is at some distance from the interface,
investigated by Beuth in [18]. The mechanisms and fracture characteristics of cracks in a film on a substrate were analyzed
also by Hutchinson and Suo [19]. Plastic yielding of the substrate and film was accompanied: by the vertical cracking in the
films and the interface fracture [18, 19], delamination from the ends of the vertical crack in the film [20], crack extension
in the substrate along the interface [21], multiple interface cracks [22], etc. For woven fabric and hybrid composites, the
dynamic bond stress in bi-material elastic homogeneous semi-infinite layers subjected to a pressure load steps along the
end surfaces was studied in [23, 24], but the delamination along the interface was not studied. By using the technique of
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Laplace transforms, closed form solutions of the dynamic displacements and stresses in each yarn, the shearing stresses at
the interfaces between adjacent yarns, were obtained in the transformed domain. The results for a step uniform impact are
presented as an example. In [25] the beam theory is used to study dynamic mode I crack propagation through-thickness
reinforced laminar structures loaded with a flying wedge. Although well known advantages of the shear lag method, its
usage and applicability in the field of dynamics is still insufficient.

The origins of the concept of the cohesive zone model goes back to work of Barenblatt [26] and Dugdale [27], where
the model has been involved as a preferred method to analyze fracture behaviour in monolithic and composite materials.
All other models implemented in metallic and ceramic materials, reinforced polymer composites, and bi-material structures
start from the assumption that at least one interface can be defined where crack propagation is allowed by the introduction
of a possible discontinuity in the displacement field. Various interface cohesive laws were proposed (Hilleborg et al. [28],
Rose et al. [29], Needleman [30], Tvergaard [31], Tvergaard and Hutchinson [32], Xu and Needleman [33]). The main
difference between these laws lies in the shape of the traction-displacement response.

The objective of this work is to continue investigations on the dynamic cohesive behaviour, accompanied with elastic
brittle one for a bi-material pre-cracked structure under a given sinusoidal dynamic load. The method used in [34], e.g.
the shear lag combined with the Laplace transform will be also applied. The considered 2D structure is modeled as two
different adjacent material plates, namely A and B, with prescribed properties.

In order to activate the mechanism depicted in Fig. 1 (Sect. 2), it is essential that the initial mode I crack when it reaches
the interface does not penetrate the second plate, but rather kinks along the interface and give an interfacial elastic-brittle
delamination.

A restriction for the ratio of energy release rates of plates, which allows occurring of the interface delamination first and
before the initiation of the normal crack in the second plate is needed. It is assumed that the ratio of energy release rates of
plates, which allows occurring of the interface delamination first and before the initiation of the normal crack in the second
plate has to be satisfied.

To the knowledge of the authors, no investigations by shear lag analysis are known until now for the subject of the
interface cohesive delamination (decohesion), accompanied by an elasto-brittle one in bi-material structures subjected to
dynamic time-harmonic loads, despite the fact that a variety of static analysis of different kinds of composites has been
performed.

Further the authors will name the result of the interface decohesion as cohesive single debond length.
In the present paper both shear lag analysis and Laplace transform are used to obtain the cohesive single debond length

along the interface. The value of the cohesive debond length is determined through suitable contact conditions for fitting
together the elastic [34] and cohesive solutions. The growth of debond length is not considered. All results obtained as well
as the parametric analysis of the results obtained are illustrated by figures and discussed.

2 Analytical model

Following [34] it is assumed that the periodic bi-material structure consists of a two elastic plates with different material
properties and material interface. The bi-material structure begins with harder material (ceramics), interface and softer
material. The first plate A is pre-cracked by a transient crack (mode I), reaching the interface. In the previous paper [34],
due to the assumed elastic brittle interface behaviour, the interface delaminates from both sides of a normal crack with a

Fig. 1 Bi-material structure under time-harmonic dynamic excitation.
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single elatic-brittle debond length (mode II). The restriction on the ratio of energy release rates is assumed to satisfy the
arising of interface delamination before the condition for arising the normal crack in the plate B.

Every plate has Young modulusE, mass densityρ, thicknessh, axial displacement u(x, t) and axial stress σ(x, t), where
t, x denote time and axial coordinate, respectively. The total length of the cell is 2L. The structure is exited again by a
dynamic load A0 sin(ω t) over the ends x = ±L, see Fig. 1. The inertia forces of the already debonded parts with length le
of the plates A and B are not taken into account.

The material interface I is supposed to be with a zero thickness and working only on shear with a shear modulus G, a
shear stress τI(x, t), where a superscript I for shear stress τI and displacement uI = uA − uB belongs to the interface.
The plates are modeled as isotropic elastic materials, while the cohesive law governs the interface behaviour.

The axial stresses and strains are uniform over the cross section of each plate, working only on tension-pressure. The
bending is neglected.

The goal of this study is to determine the dynamic response of the bi-material structure, having mode II elastic-brittle
crack along the interface with length le as well as to predict the next single debond cohesive length along the interface (see
Fig. 1).

3 Cohesive behaviour of the interface

The behaviour of the interface shear stress τI as a function of interface displacement uc
I is assumed as cohesive one (see

Fig. 2).

Fig. 2 The diagram τ c–uc
I .

Following the assumption of the shear lag model, the governing dynamic Eqs. (1), constitutive equations (2), initial (3)
and boundary conditions (4) are proposed, respectively as
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where by uc
i , Ei, ρi, hi, σc

i ; i = A, B the displacements, Young moduli, densities, thicknesses, and stresses of the plates
are denoted, respectively. By τI , τcr, Kc, u

c
I the interface shear stress, its critical value, the cohesive softening modulus,
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and interface displacement are denoted, respectively. Note that in (1) the continuity conditions for the equality of elastic
(ue

i ) and cohesive (uc
i ) displacements and their respective derivatives u′ e, c

i at the point X = le are taken into account.
Subscripts A, B denote material and geometric parameters of plates. By superscripts “c, e” the respective cohesive or

elastic displacements, stresses, and strains are denoted.
According to [34], the following non-dimensional parameters ūc

i , L̄, τ̄c, σ̄c
i , l̄i, ξ, η are introduced

uc
i

= (hA + hB)ūc
i
, L = αL̄, τc = Cτ̄c = G(τ̄cr − K̄c(ūc

A − uc
B)), Kc = GK̄c,

σc
i = EAσ̄c

i , i = A, B
(5)

x = αξ, α =
[

2hAEA

G
(hA + hB)

]1/2

, lj = α l̄j , j = e, c ,

t = βη, β =
[

2hAρA

G
(hA + hB)

]1/2

, η1 =
EA

EB
, μ =

ρA

ρB
, ς =

hA

hB
.

Eqs. (1) become
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where λ2 = ςη1, c2 = η1
μ .

Further the lines over ūA,B, L̄, τ̄I , σ̄A,B, l̄j are omitted, but remembered.
The initial and boundary conditions become
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, (7)

σc
B(ξ, η)|ξ=L =

∂uc
B

∂ξ
= η1B0 sin(ωη) for every η.

To solve the problem, given by Eqs. (6)–(7), the Laplace transform will be used. The following procedure for finding the
analytical solution of Eqs. (6) together with (7) is proposed.

Let us introduce the one side Laplace transform pairs f̃ , f (the Laplace image and original functions, respectively) as
follows

f̃(ξ, s) =

∞∫

0

f(ξ, η) exp(−sη)dη and f(ξ, η) = 1
2πi lim

T→∞

γ+iT∫

γ−iT

f(ξ, s) exp(sη)ds,

where γ is a real number. The contour path of integration is in the region of convergence of f̃(ξ, s), requiring γ > Re(sp)
for every singularity sp of f̃(ξ, s). If Re(sp) < 0 for every sp, then γ = 0 and the inverse integral formula becomes
identical to the inverse Fourier transform.

Applying Laplace transform to Eqs. (6) we obtain
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.

Further the tilde over ũA,B is omitted, but remembered. From (8/1) we have
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.
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Replacing this relation in (8/2) the following governing ordinary differential equation about uc
A

is obtained

d4uc
A

dξ4
+ U(s)

d2uc
A

dξ2
+ T (s)uc

A − Y (s) = 0, (9)

where T (s) = s2[c2s2 − Kc

(

λ2 + c2
)

], U(s) = Kc(1 + λ2) − s2(1 + c2), and Y (s) = −s2c2τcr.
Eq. (9) has to be solved with boundary and contact conditions given by (10). The contact conditions are the result of

the fitting together both elastic [34] and cohesive solutions and consist in equalities of elastic and cohesive displacements
and their first derivatives. The contact conditions are posed at the point of translation ξ′ = ξ − le of the initial origin of the
Cartesian coordinate system (see Fig. 1) of the axes 0ξ for elastic solution [34]. Then the obtained elastic solution is in the
interval ξ′ = [0, (l − le)], while the cohesive solution starts from ξ = le and is determined in the interval ξ = [0, le].

uc
A
(le) = ue

A
(0) =

τcr

s
,

uc
B(le) = ue

B(0) = 0,
(10)

duc
A

dξ

∣
∣
∣
∣
(le,s)

=
due

A

dξ

∣
∣
∣
∣
(0,s)

= 0,

duc
B

dξ

∣
∣
∣
∣
(le,s)

=
due

B

dξ

∣
∣
∣
∣
(0,s)

= r1r3

(

r2
3
− r2

1

) M(s)
P (s)

,

where
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,

and r1, r3 are the roots of the respective characteristic equation for the elastic case [28].
The characteristic equation of Eq. (9) has four real roots due to the fact that the coefficients in (9) satisfy the condition

for a positive discriminant for the quadratic equation with a substitution n = p2, e.g.

p4 + U(s)p2 + T (s) = 0 ⇒ n2 + U(s) + T (s) = 0,
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[
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Thus, the four real roots arep1,2 = ±√
n1, p3,4 = ±√

n2. Since the roots n1 and n2 are negative, then all set of roots of the
bi-quadratic characteristic equation for Eq. (9) and for any frequency ω are pure imaginary.

Then the fundamental solution of Eq. (9) can be given in a form
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A
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where the integration constants D1(s) i = 1 . . . 4, satisfying the contact conditions (10) are expressed as
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D3(s) =
P (s) p3 cos(lep3)

(
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(

p2
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))
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,
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(
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Then the following solution for the interface shear stress is obtained:

τI(ξ, s) = τcr − Kc (uA (ξ, s) − uB (ξ, s))

= τcr − Kc

(

uA (ξ, s) − 1
Kc

(

∂2uc
A

(ξ, s)
∂ξ2

+
(

Kc − s2
)

uc
A

(ξ, s) − τcr

s

))

⇒ τI(ξ, s) = τcr − Kc (uA (ξ, s) − uB (ξ, s)) =
∂2uc

A
(ξ, s)

∂ξ2
− s2uc

A
(ξ, s) +

(1 + s)
s

τcr. (13)

Following Manolis and Beskos (1987) [35] we will calculate by inverse Laplace transform the original of the shear stress
Laplace image. Further, to calculate the debond length at given time interval and the pair of loading characteristics, the
special condition for on the value of the interface shear stress has to be satisfied.

Let [0, T ] is the time interval, while K, N are positive integers and tj = βηj = jT
N , j = 0, . . . , N − 1.

As is underlined in Manolis and Beskos [35] it is assumed, that for K.N ∈ [50, 5000] it should be chosen b.T ∈ [5, 10]
in order to have an accurate result (see (13a)). Note, that the proposed procedure is valid for every length of a time interval.

Then τI(ξ, tj) must be calculated in the discrete set of points tj = βηj and ξ ∈ [0, L] through formulae

τI(ξ, tj) =
2
T

ebtj

⎡

⎣− 1
2
Re
(

τ̃I(ξ, b)
)

+ Re

⎛

⎝

N−1∑

j=0

(An + iBn)W jn

⎞

⎠

⎤

⎦ , (13a)

where

An =
K∑

k=0

Reτ̃I

(

ξ,

(

b + i (n + kN)
2π

T

))

, Bn =
K∑

k=0

Imτ̃I

(

ξ,

(

b + i (n + kN)
2π

T

))

,

n = 0, . . . , N , W = ei 2π
N .

So to find a time dependent shear stress τI(ξ, t) for t ∈ [0, T ] we have to solve the problem in a Laplace domain for all
values of the parameter sn = b + in 2π

T , n = 0, . . . , N . The Mathematica 5.2 program is used to calculate An, Bn, and
τI(ξ, tj). In Sect. 3.1 the small value of the time interval is chosen. The respective figures illustrate the dynamic interface
delamination at the initial state.

3.1 Length of a single cohesive debonding

To find a single debond length for cohesive zone, the following assumption on the value of the shear stress is proposed:

If τI (ξ1, s) = 0, where ξ1 = le − lc, then 0 = τcr − Kc(uA(ξ, s) − uB(ξ, s)) ⇒ τcr = KcuI (ξ, s).
We have

τI(ξ, s) = τcr − Kc (uA ((le − lc) , s) − uB ((le − lc) , s)) . (14)

The equation for finding the single debond cohesive length regards

∂2uc
A

(ξ, s)
∂ξ2

− s2uc
A

(ξ, s) +
(1 + s)

s
τcr = 0. (15)

The parametric analysis on the influence of material and geometric characteristics as well as the frequency of the applied
loading on the behaviour of the τI , le, and lc along the interface will be illustrated by figures in Sect. 4.
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3.2 Cohesive debond length of the interface zone

The single debond length lc which gives the magnitude of the cohesive cracking along the interface can be calculated from
Eq. (15) under assumption that the shear stress reaches its zero value τI(lc, tj) = 0. Using the inverse Laplace transform
the value of the corresponding single elastic debond length is taken into account. When calculating the value of a single
cohesive debond length the following criterion is proposed:

le + lc ≤ L, (16)

where L is the non-dimensional value of the length of the structure, respectively of the interface.
The parametric analysis of the influence of material and geometric characteristics as well as the frequency of the applied

loading on the behaviour of τI and le, lc along the interface will be illustrated by figures in Sect. 4. The single debond
length corresponds to a given value of the amplitude with given value of a time.

4 Results and discussion

4.1 Numerical data

Starting numerical calculations for cohesive debond lengths the authors will use non dimensional geometries and material
properties for bi-material structures considered in [34], where the elastic debond lengths are already calculated. To simplify
the calculations for inverse Laplace transform the time interval T = [0, 8 ] s is taken as in [34]. Note that these calculations
for the originals can be performed for every value of the time interval. The inertia forces from the already debonded along
the interface parts of the first plate are neglected from the simplicity reason in the case of thick first plate. Further the thin
first plate will be considered. Under such an assumption the inertia forces don’t play significant role due to their small
values inertial characteristics.

Let us consider two elastic plates A and B with finite lengths 2L = 1.2 m and thickness 2hA = 0.2 m, 2 hB =
1 m, under the dynamic loading A0 sin(ωt) for time interval T ∈ [0, 8 ] s, where A0 ∈ [1, 6] × 109 Nm−2, ω ∈
[1436.07, 17232.8] s−1 are the amplitude and the angle frequency, respectively. Further the non-dimensional frequency
Ω = kL = ω

C L = 2π
λ L and non dimensional geometry and material characteristics will be used. Here k, ω, C, λ denote

the wave number, angle frequency, velocity of the wave propagating C = CA =
√

EA/ρA in layer A, and the length of
the wave, respectively.

The material properties (a polyacrilate thermoplastic glue) of the interface are presented by the shear modulus is GI =
800 MPa, the critical shear stress τI = τcr = 18 MPa and with the softening modulus Kc = 20 MPa, where this value of
the softening modulus are taken to be fictitious. The value of the softening modulus is chosen to illustrate the arising of the
single cohesive debond length at the abovementioned criterion (15).

The following mechanical, non-dimensional parameters and frequencies for the bi-material structure are shown on Ta-
ble 1, Table 2, and Table 3.

Table 1 Mechanical characteristics.

Material E [GPa] ρ [kg/m3]
Steel (440C) 200 7650

Aluminium (Al) 60 2700

Cermet (85% Al2O3 +15% Al) 294 3960

As it was underlined in [34], there exist two important limit values of the frequency: Ω1 – the frequency when the
elastic-brittle delamination process begins and Ω2 – when the full elastic brittle delamination occurs, see Table 3. So, the
frequency interval Ω ∈ [0.1, 1.2] should be considered.

Table 2 Non-dimensional parameters.

Type of bi-material structure α β η1 μ ς L

Cermet (85% Al2O3 +15% Al)/Al 6.641 0.001 4.899 1.467 0.2 0.09

Cermet (85% Al2O3 + 15% Al)/Steel (440C) 6.641 0.001 1.47 0.518 0.2 0.09
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Table 3 Loading frequencies Ω.

Type of bi-material structure Ω1 Ω2

Cermet (85% Al2O3 + 15%Al)/Al 1.02 less than 0.68

Cermet (85% Al2O3 + 15% Al)/Steel (440C) 1.01 less than 0.97

Substituting the values of the above parameters in equations for τI(ξ, tj) we obtain an elastic-brittle solution, describing
in [34]:

• The dependence of the debond length le on the frequency of the applied dynamic load with fixed amplitude B0 =
A0a0/(EAG)1/2 = 0.150584, where A0 = 4 × 109 N/m2 and a0 = [2hA/(hA + hB)].

• The dependence of the shear stress τI(ξ, tj) versus ξ at dynamic load with fixed frequency Ω = 1 for the different
bi-material structures.

• The dependence of the single debond length le on non-dimensional amplitude B0 of the applied dynamic load with
fixed frequency Ω = 1.

Following [34] all parameters in the next figures are taken to be non-dimensional ones.
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Fig. 3 Dependence of the debond lengths le and lc on the frequency Ω of the applied load at fixed value of the amplitude B0 =

A0a0/(EAG)1/2 = 0.150584 for the different bi-material structures.

By the aid of the obtained single elastic-brittle length and the same loading condition Eq. (15) is resolved to obtain the
corresponding single cohesive debond length. Figs. 3 show the dependences of the single debond lengths le and lc on the
non-dimensional frequency Ω at fixed value of the amplitude B0 ∈ [0.037647, 0.225876], i.e. le and lc decreases with
increasing of the frequency Ω. The full delamination occurs at lower frequencies Ω2, i.e. L

λ ∈ [0.016, 0.193]. As expected,
the single cohesive debond length are much smaller comparing with values of the respective single elastic debond length.

The behaviour of the shear stress τI(ξ, t)onξ ∈ [le, L] at time-harmonic dynamic load with frequency Ω = 1 for two
different bi-material structure is shown in Fig. 4.

This figure clearly evidences the influence of ξ to the shear stress for the given value of frequency Ω = 1. For the
different bi-material structure at constant amplitude of the applied mechanical time harmonic load B0 = 0.150584, the
single elastic and cohesive debond lengths le and lc have the following values:

• le = 0.03027 and lc = 0.0115 Cermet (85% Al2O3 + 15% Al)/Al,
• le = 0.0415 and lc = 0.0176 Cermet (85% Al2O3 + 15% Al)/Steel (440C).
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Fig. 4 Distribution of the shear stress versus ξ at dynamic load with frequency Ω = 1 for the different bi-material structures.
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Fig. 5 Dependence of the debond lengths le and lc on non-dimensional amplitudes of the applied dynamic B0 at non-dimensional
frequency Ω = 1 for the different bi-material structures and time interval t ∈ [0 , 8] s.

The interface shear stress reaches to the critical shear stress and τI(le) = τcr = 0.0225. When the single debond length le
for the different bi-material constructions tends towards L, the full delamination process occurs.

Fig. 5 shows that the single elastic and cohesive debond lengths (le and lc) strongly depend on the amplitude of the
applied dynamic load, i.e. both increases with increase of the load amplitude and this dependence is sensitive to the material
properties of the bi-material structure. It can be seen, that for a given interval of amplitude of applied load, the material
properties of the second plate play an important role. If Aluminium is used for the second plate, the value of single debond
lengths are smaller and arises earlier, comparing with Steel (440 C) plate (t ∈ [0 , 8] s).

Fig. 6 presents the parametric analysis of the single debond lengths le and lc from the geometric ratio ς and load
frequency. It is shown, that the single elastic le and cohesive lc debond lengths strongly depend from the geometric ratio ς
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Fig. 6 Dependence of the debond lengths le and lc from ς for two values of frequency Ω = 0.6; 1.02 and time t ∈ [0 , 8] s for Cermet
(85% Al2O3 + 15% Al)/Al structure.

and from the frequency of the applied dynamic load, i.e. both le and lc decrease with increasing of the load frequency or
time t ∈ [0, 8] s along the axis ς .

The delamination process begins when the frequency Ω2 is less the 0.68 and the full delamination occurs for frequency
Ω1 = 1.02. The last case leads to a full degradation of the structures.

5 Conclusion

In this paper a mathematical modeling of dynamic stress behaviour and an cohesive interface delamination of bi-material
plates subjected to sinusoidal dynamic loading with the normal pre-crack of the first plate reaching the interface and
debonded along the interface with a single debond elastic-brittle length was investigated. To study the problem, the shear
lag model was adopted and applied to dynamic problems of bi-material structure, assuming the cohesive behaviour of the
interface material accompanied by an the elastic-brittle debonding.

The inverse Laplace transform was used to obtain the single cohesive debond length along the interface of bi-material
structure. The parametric analyses of the single elastic and cohesive debond lengths from amplitude of loading and geo-
metric ration ς are illustrated by figures and discussed.
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