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Abstract – The ultrasonic scanner dedicated for acquiring the 
RF  echoes, backscattered from the trabecular bone, was 
developed. The device is based on the concept of minimizing of 
electronics and computations executed solely in the main 
computer processor and the graphics card. The electronic 
module of encoder-digitizer – executing all the transmission and 
reception functions – is based on a single low-cost FPGA chip. 
The scanner is equipped with the mechanical sector scan probe 
with a concave transducer with 50 mm focal length, center 
frequency of 1.5 MHz and 60 % bandwidth at – 6 dB. The 
example of femoral neck bone examination shows that the 
scanner can provide ultrasonic data from deeply located bones 
with the ultrasound penetrating the trabecular bone up to the 
depth of 20 mm. It was also presented that the RF echo-data 
acquired with the scanner allow for the estimation of sound 
attenuation in trabecular bone. 

I.  INTRODUCTION 

Osteoporosis induced by aging and as a side effect of 
certain drugs is a serious public health problem. It is a skeletal 
system disease characterized by low bone mass and 
architectural deterioration of trabecular bone structure. In 
consequence the bone fragility and a susceptibility to fracture 
increases. The lack of adequate means for early detection of 
bone deterioration is the most critical issue in the problem of 
diagnosing and monitoring osteoporosis therapy in general 
and in minimization of side effects of pharmaceutical 
treatment on skeletal system. 

"Bone sonometry" is an accepted technique for diagnosis of 
osteoporosis. It is based on sound transmission through the 
examined bone, which enables the determination of the 
frequency-dependent attenuation coefficient (nBUA - 
normalized Broadband Ultrasound Attenuation) well 
correlated with bone mineral density (BMD), that in turn is an 
important predictor of fracture risk. However, the applicability 
of transmission techniques for in vivo measurements is limited 
to peripheral bones, in practice to calcaneus. Also, the 
evaluation of bone strength requires not only the knowledge of 
its density but also of its microscopic structure. 

The analysis of ultrasonic echoes scattered on the soft 
tissues have been successfully applied for tissue 
characterization [1, 2]. Similarly, the trabecular bone 
backscatter contains information about the properties of the 
bone structure. Therefore, it could be anticipated that the 
analysis of the ultrasound signals that have been scattered in 
trabecular bone, should be useful in assessment of the 
microscopic architecture of the investigated bone. Moreover, 

the scattering techniques enables acquiring the ultrasonic data 
from the bones located deep in the body. An overview of 
technological development applied to assess bone strength in 
vivo, including investigations of trabecular and cortical bone, 
and use of transverse transmission, axial transmission as well 
as reflection techniques, was published by Laugier [3]. 

The femoral neck bone fracture often occurs in osteoporosis 
and leads to severe complications. Therefore, assessment of 
femoral bone microstructure and condition is important and 
essential for the osteoporosis diagnosis and treatment 
monitoring. Up to now the in vivo measurements of a 
proximal femur were carried out only in transmission [4]. 

We have developed the ultrasonic scanner dedicated for 
acquiring the RF echoes, backscattered from the trabecular 
bone in vivo. Moreover, the bone scanner provides data not 
only from calcaneal bone but from the deeply located bones 
e.g. femoral neck. The B-scan image of the investigated 
structure is displayed facilitating the bone location and proper 
adjustment of the receiver gain. Light and easy to manipulate 
scanner probe allows the operator for recording the ultrasonic 
signals from the optimal projection. The applicability of the 
scanner for the data acquisition from trabecular bones was 
validated in in vivo experiment [5]. 

II. MATERIALS AND METHODS 

A. Bone scanner hardware 
The discussed scanner is designed for the trabecular bone 

examination and is the modified version of previously 
developed a high-frequency μScan device operating at 
30 MHz frequency and dedicated for skin lesions visualization 
[6]. The attenuation of ultrasound in the trabecular bone is 
much higher than in the soft tissue. Therefore, the probing 
frequency is in the range of 1 MHz, and consequently the 
sampling frequency was reduced from 200 MHz down to 
20 MHz. In our case the useable frequency was centered 
around 1.3 MHz. An analog input low-noise amplifier, a 
variable gain amplifier and a linear gain power output 
amplifier were optimized for 0.5–3.0 MHz range and mounted 
on a separate analog module. 

The device is based on the concept of minimizing the 
custom electronics hardware moving the computation to the 
PC main processor and the graphics card. The electronic 
module of encoder-digitizer (Fig. 1), executing all the 
transmission and reception functions, is based on a single low-
cost  FPGA chip (Xilinx® Spartan 3 XC3S200).  
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Fig. 6. Example of frequency dependent attenuation α(f) measured in femoral 

neck (dashed line) is plotted together with linear regression approximation 
(solid line). Attenuation coefficient = 15.5dB/(MHz⋅cm). 

IV.  RESULTS 

The experimental measurements showed that the scanner 
could be used for collecting the backscatter from the 
trabecular bones located deep in the body. Mean nBUA values 
obtained from in vivo measurements of femoral neck for each 
volunteer are presented in Table I together with the standard 
deviation (SD). They were derived from the four successive 
examinations of each investigated bone. 

V. DISCUSSION AND CONCLUSIONS 

The novel versatile ultrasonic scanner, dedicated for the 
study of bones, was developed. The scanner enables the in 
vivo acquisition of the RF echoes from the trabecular bone. 
The B-scan image, accompanying the acquired RF data 
proved, to be useful in determination of the bone location as 
well as  the gain setting. The TGC gain curve is recorded 
together with ultrasonic data allowing the post recovery of the 
absolute magnitude of RF echoes. 

The experimental measurements carried out in the femoral 
neck have shown that the scanner is useful for collecting the 
backscatter from the trabecular bone located deep in the body. 
It was proved that RF echo-data can be applied for the 
trabecular bone properties assessment. Results are in the range 
of nBUA determined in vitro for femoral bone using the 
transmission technique [7]. Rather high standard deviation is 
probably caused by the difficulty in localizing the very same 
volume of tissue for each measurement. 

There are some intrinsic difficulties of scattering 
measurements in trabecular bone [8]. The impedance 
mismatch between the trabeculae and surrounding bone 
marrow is high, resulting in strong scattering of the ultrasound 
and considerable variability of the echoes magnitude. 
Additionally, at the frequency in the range of 1.0 MHz high 
ultrasound attenuation limits the depth of the wave penetration 
into the bone and the useful backscattered signal is relatively 
short (15-25 μs). The applied averaging procedures cannot 
efficiently reduce the stochastic nature of the signal spectrum 
what results in some randomness of the calculated attenuation 
coefficients. It is appropriate to note that attenuation 
coefficients measured in the transmission mode are also often 
overestimated due to the effects of the phase cancellation on  

TABLE I 
NBUA OBTAINED FROM IN VIVO MEASUREMENTS 

OF FEMORAL NECK TRABECULAR BONE 

V
ol

un
te

er
 nBUA [dB·cm-1·MHz-1] 

Left leg Right leg 

Mean SD Min-Max Mean SD Min-Max 
1 5.6 2.2 3.2 – 9.0 6.7 1.7 3.9 – 8.0 
2 11.9 6.2 5.3 – 19.5 8.6 2.1 5.0 – 10.4 
3 20.0 6.1 10.3 – 26.8 13.3 3.1 9.7 – 17.3 
4 9.4 2.1 7.0 – 12.4 13.4 1.1 11.6 – 14.6 
5 10.3 3.1 6.8 – 15.2 12.7 3.0 8.6 – 17.0 

the receiving transducer. In the case of deep bones, the 
ultrasonic wave travels relatively long distance in the soft 
tissue and is strongly reflected and refracted by cortical bone 
that is much more irregular than the calcaneal bone surface. 
Interaction between the ultrasound and the soft and hard tissue 
introduces pulse spectrum variation that should be considered 
in attenuation calculation. 

An issue of reliable determination of the bone attenuation 
from the ultrasonic backscatter requires more theoretical and 
experimental investigations. That was beyond the scope of this 
study. In this work, the scanner that can provide in vivo 
ultrasonic data from deeply located trabecular bones was 
described. These data will be beneficial in developing the 
processing techniques designed for the estimation of 
attenuation, thus improving the accuracy of assessing the bone 
properties. 

ACKNOWLEDGMENT 

This work has been supported with a scholarship from the 
European Social Fund, Human Capital Operational 
Programme for the execution of the project “Support for bio 
tech med scientists in technology transfer”; (UDA-
POKL.08.02.01-14-041/09). 

REFERENCES 

[1] Z. Lu, J. Zagrzebski, F. Lee, Ultrasound backscatter and attenuation in 
human liver with diffuse disease, Ultrasound in Med. and Biol., vol. 25 
(7), pp. 1047-1054, 1999. 

[2] T. Bigelow, B. McFarlin, W. D. O'Brien, M. Oelze, In vivo ultrasonic 
attenuation slope estimates for detecting cervical ripening in rats: 
Preliminary results. J. Acoust. Soc. Am., vol. 123, pp. 1794-1800, 2008. 

[3] P. Laugier, “Instrumentation for in vivo ultrasonic characterization of 
bone strength”, IEEE Trans UFFC, vol. 55(6), pp. 1179-96, 2008. 

[4] R.  Barkmann, P.  Laugier, Moser, U.  Dencks, S.  Klausner, M.  Padilla, 
F.  Haiat, G.  Gluer, “A device for in vivo measurements of quantitative 
ultrasound variables at the human proximal femur”, IEEE Trans.UFFC, 
vol. 55(6), pp. 1197-1204, 2008. 

[5] L. Cieslik, J. Litniewski, “Ultrasonic evaluation of deeply located 
trabecular bones – preliminary results”, Acoustical Imaging, 31, Springer 
eds., 2011, in press. 

[6] M. Lewandowski, A. Nowicki, “High Frequency Coded Imaging System 
with RF Software Signal Processing”, IEEE Trans UFFC, vol. 55(8), pp. 
1878-1882, 2008. 

[7] F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. Laredo, P. Laugier, In 
vitro ultrasonic characterization of human cancellous femoral bone using 
transmission and backscatter measurements: Relationship to bone 
mineral density, J. Acoust. Soc. Am., vol. 119, pp. 654-663, 2006.  

[8] F. Padilla, K. Wear, Scattering by trabecular bone, in Bone Quantitative 
Ultrasound, Springer, edited by P. Laugier and G. Haïat, 2011, chapter 6 

1 1.1 1.2 1.3 1.4 1.5
2

4

6

8

10

12

Frequencu [MHz]

A
tte

nu
at

io
n 

[d
B

/(M
H

zc
m

)]

489 2011 IEEE International Ultrasonics Symposium Proceedings


